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Preview

This chapter introduces adapted stochastic processes within the framework of evolving in-
formation, formalized by filtrations. We begin by defining filtrations and the notion of
adaptedness. We then explore two important classes of processes that exhibit special prop-
erties: Markov processes and martingales. In the last part of this chapter, we introduce
the Brownian motion along with their properties, which is the building block of stochastic
calculus and modelling in the subsequent chapters.

Key topics in this chapter:

1. Filtrations and adapted processes;
2. Markov processes;

3. Martingales;

4. Brownian motions and properties.

1 Adapted Stochastic Processes

Generally speaking, a stochastic process on a probability space (2, F,P) is a family of F-
measurable random variables {X;};c7, indexed by a time parameter ¢ € T

1. If T =Ny, {X, }ie7 is a discrete-time process;

2. f T =R, :=[0,00), {X;}te7 is a continuous-time process;

In this course, we will primarily focus on continuous-time stochastic processes. For conve-
nience, we will use X to denote the process {X;};e7 when no confusion is caused.

By definition, each X, is F-measurable. Yet, this sole requirement does not capture the
non-anticipative nature of a realistic stochastic process. This property means that the value
of the process at time ¢ should depend only on the information available up to time ¢, and
not on any future information.

For example, let 7" > 0 and {S; }sc[o,1) be the stochastic process such that S; represents the



price of a risky asset at time ¢. Define M; := max,c}; 77 Sy, which represents the maximum
price of the asset over the remaining time interval [t,T"]. The process {M;}icpo, fails to be
non-anticipative, M; depends on the price of the asset in the future.

The above example highlights the importance of restricting realistic stochastic processes
to rely only on the information available up to the current time. We first define a filtration
as follows.

Definition 1.1 Let (2, F,P) be a probability space. The collection {F;}ic7 is called a
filtration if

1. for each t € T, F; is a sub-o-algebra of F;

2. forany s <t, s, te T, F, CF.
In that case, we call the tuple (Q, F,{F: }ie1, P) a filtered probability space.

Within a filtration {F;}ie7, each F; represents the collection of events whose outcomes
are known by time t. The second defining property of a filtration ensures that information
is cumulative: any event observable at an earlier time remains observable at all later times.
Given a filtration, we define an adapted stochastic process as follows.

Definition 1.2 A stochastic process is said to be adapted to the filtration {F;}ic7 if,
for any t € T, X; is F;-measurable.

In other words, the random variable X; is fully determined by the information up to time
t as encoded by F;.

Definition 1.3 Let {X;}:c7 be a stochastic process defined on a filtered probability
space (Q, F,{Fihier,P). For each fixed w € 2, the sample path of the process is the
function

t Xy (w), t>0.

That is, a sample path is a trajectory of the stochastic process as a function of time.

Definition 1.4 Let X = {X;};c7 be an adapted process on a filtered probability space
(2, F,{Fi}ieT,P). The filtration generated by X, denoted {F };cr, is defined by

FXi=0(X,:s<teT),

i.e., FX is the smallest o-algebra with respect to which all X, for s < t € T are
measurable.



2 Markov Processes

Definition 2.1 A {F;},c7-adapted process X = {X;},c7 is called a Markov process
if, for any s <t €T and A € F,

P(X, € A|F,) = P(X, € Alo(X,)) as.

Equivalent, X is Markov if, for any s < t € T and any bounded, Borel measurable
function f, there exists another Borel measurable function g such that

The following independence lemma is useful for showing the Markov property of a stochas-
tic process.

Lemma 2.1 Let Xy,..., X, be G-measurable random variables, and Y7, ...,Y,, be ran-
dom variables that are independent of G. Let f(z1,...,2n,¥1,...,Ym) be a measurable
function and define

g(xy, ... z) = E[f(x1, ..., 20, Y1,..., Y0)]

Then,
E[f(Xy, ..., X0, Y1,.. ., Y )lG] = g(Xy, ..., X,).

Example 2.1 (Random Walk) Consider a sequence of i.i.d. random variables {&,}>° ;,
where P(§, = 1) = p, and P(§, = —1) = 1 — p, where p € [0,1]. Define a filtration
{Fn}>2, with discrete time step by F,, := o(&; : 0 < k < n), which is generated by the
independent trails up to time n. Define a {F,,}2 ;-adapted process {X,,}°°, by X; := &,
and for n > 1,

Xo=) & =Xo1+6.
k=1

We show that {X,}22, is a Markov process: for any m > n, X, = X, + 3" ., &. By
the independence assumption, for any k > n, we have &, being independent of F,,. Now,

fOI‘ any measurable funcl;ion f 9 let
k=n+1

f <Xn+ > gm) |]—"n] = g(X,).

k=n+1

g(x) :=E

By Lemma [2.1]




Therefore, X is Markov.

3 Martingales

Definition 3.1 A {F;};c7-adapted process { X, }e7 is called a martingale if it satisfies
the following;:
1. forany t € T, X, € L';
2. forany s <teT,
E[X|Fs] = X a.s.

If the second property is replaced by E[X;|Fs] > X, (resp. E[X;|Fs] < X a.s.) for
any 0 < s <t € T, the process {X;};>0 is called a sub-martingale (resp. super-
martingale).

In other words, a martingale is a stochastic process whose future expected values given the
current information remain constant. A sub-martingale (resp. sub-martingale) is a process
whose future expected values given the current information increases (resp. decrease) over
time. By definition, a process is a martingale iff it is both a super-martingale and sub-
martingale.

Example 3.1 (Random Walk) Continuing from Example compute E[X,,|F,] for
any 1 < n < m. Hence, determine the values of p such that {X,}>°, is a super-
martingale/sub-martingale/martingale.

Solution. We first compute E[X,,.;|F,] any n > 1. Note that by the independence of
&np1 with &, 1 < k < n, and the fact that X, is F,-measurable,

E[Xni1|Fn] = E[Xpn + &nti1| Fu] = X + E[én1] = X +2p — 1.
Using this and the tower property of conditional expectations, we further have
E[Xn 2| Fn] = B [E[Xn o Foa]|Fn] = B [Xnpa +2p — 1| 5] = Xo +2(2p - 1).
Applying this recursively, for any m > n, we have
E[Xn|F) = X+ (m—n)(2p —1).

Since m —n > 0, {X,} is a martingale if p = 1/2, a sub-martingale if p > 1/2, and a
super-martingale if p < 1/2. ]



Example 3.2 Following from Example[3.1] show that {X,—n(2p—1)}32, is a martingale
for any p € [0, 1].

Solution. From Example [3.1], we have shown that, for any m > n,
E[Xn|F) = X+ (m—n)(2p —1).
Rearranging yields
E[X,, —m(2p — 1)|F,] = X, —n(2p—1).

Therefore, the process {X,, — n(2p — 1)}22, is a martingale.

Indeed, the term n(2p — 1) serves as a compensator which adjusts for the drift of the
expected value of X,,. By subtracting this drift, the resulting process becomes centered
and thus martingale-valued. O

Example 3.3 Let X € L*(Q, F,P) and {F;}i>0 be a filtration. Then, Z;, := E[X|F]
is a martingale. To see this, it is clear by definition of conditional expectations that
{Z:}i>0 is {F: }i>0-adapted. In addition, X; € L', since by triangle inequality,

E[|Z:]] < E[E[X||F]] = E[X]] < oo,
since X € L'. Finally, for any 0 < s < ¢, using the tower property,
E[Z:|F] = E[E[X|F]|F] = EX|F] = Z,,

which verifies the martingale property.

Proposition 3.1 Let {X;};e7 be a martingale. Suppose that ¢ : R — R is a convex
function and p(X;) € L' for any ¢ > 0. Then, {©(X;)}e7 is a sub-martingale.

As a consequence of Proposition if {X:}i>0 is a square-integrable martingale on
(Q, F,{F:},P), ie., E[X?] < oo for all t > 0. Then, {X?}:>¢ is a sub-martingale, since the
function p(x) = 22 is convex.

Proof. For any s <t € T, using the martingale property of {X;} and Jensen’s inequality,
we have

E[o(Xo)|Fs] > o (E[Xy|F.]) = o(X,) as.



4 Brownian Motions

This section introduces the Brownian motion, a fundamental continuous stochastic process
and building block of stochastic calculus. It was first observed by Robert Brown in 1828
(and hence the name Brownian motion). The mathematical formulation was later developed
by Norbert Wiener, and the process is also known as the Wiener process in his honor.

We first provide the definition of a standard Brownian motion.

Definition 4.1 (Brownian Motion) An adapted process {B;}+>¢ defined on a filtered
probability space (2, F, {F:}+>0, P) is called a Brownian motion (a.k.a. Wiener pro-
cess) if it satisfies the following properties:

1. By = 0 almost surely;

2. The sample paths of B; are almost surely continuous;

3. The process has independent increments: for any 0 < s < t, B; — By is independent

of Fi;
4. The increments are normally distributed: for all s,¢ > 0, By, — By ~ N(0,1).

Remark 4.1. Since By is Fs-measurable, we have o(B;) C F,. Hence, by Remark 1.1 of
Chapter 3, the independent increment implies B, — B, and B, are independent.

There are various ways to construct a continuous-time process satisfying the properties
outlined in Definition 4.1} For a comprehensive treatment, readers are referred to the mono-
graph Brownian Motion and Stochastic Calculus by Karatzas and Shreve. In this section,
we discuss a classical approach by viewing Brownian motion as the (weak) limit of a suitably
scaled random walk.

4.1 Limit of Symmetric Random Walk

Consider the symmetric random walk {X,,}>°,, where

X, = Z gk’a
k=1

and the random variables {, }°2, are i.i.d. with distribution P(§, = 1) =1/2 = P(§, = —1).
For each n € N; define the scaled process {Bt(n)}tzo by
n 1
B = ==Xy, t > 0.
n

vn

Figure|l|shows a simulated path of {Bt(n)}te[o,l] for different values of n. One can observe
that as n increases, the path becomes more spiky with an increasing frequency of oscillations
since more §’s are included in X|,;. In addition, it is easy to check that

E[B™] = 0 and Var[B{")] = Lnt}

n



Figure [2 depicts the distribution of N random samples drawn from B} for n = 20, 000.
As N increases, we see that the histogram converges to the pdf of the standard normal
variable.
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Figure 1: Simulations of sample paths of B} for different n
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Figure 2: Distribution of B} for n = 20000 and different number of simulations /N. The red
curve depicts the density function of N(0,1)

The following shows the convergence of the finite-dimensional distributions of the scaled
random walk to a standard Brownian motion.

Theorem 4.2 Let 0 <ty < --- <t < oo, we have (B(n) B( m _ g

t1 t1 2

converges in distribution to (By,, By, — By,, ..., By, — By,_,)-

B( n) Bt(:)l)

Proof. For sun]é)hmty, we consider £ = 2, and let s = t;, t = t5. Consider the mgf of
(B, B™ — for u,v € R,

(n) (n) _ p(n)

[ns) [nt]
u
=E |exp _\/ﬁ E &+ E &
Jj=1 j ns]+1



[ns] |nt]

=E [exp %;@ E [exp % Z &

j=lns)+1
where we have used the i.i.d. property of {§;}32,

We consider the first expectation on the right, which is essentially the mgf of —= ZLM
The second expectation can be handled in a similar fashion. Let m,, := |ns|. Then

[ns]

§ = § = §
Yo - LE 3
Since m,,/n — s, we have \/m,,/\/n — /s deterministically. By the central limit theorem,

L A(0,1).

Consequently []

[ns|

\/_Zgj%/\/o )

in distribution, whence

[ns] .

. u sSu
lim E |exp %Zfﬁ = Mpys)(u) =€ 2.
j=1

n—o0

Likewise,
Lnt]
imElov| 5 > o=

=|ns]+1

Therefore, we have shown that

2 2
ve(t—s)
lim Mooy oy oo (u,v) =€z T2
Tim Moo oo oo (0, 0)

= Mg, B,—B,(u,v).

IThis is a result of Slutsky’s theorem



4.2 Properties of Brownian Motion

The first property is concerned with the behavior of the sample paths of Brownian mo-
tions.

Theorem 4.3 The sample paths of a Brownian motion are almost surely continuous,

but almost surely nowhere differentiable.

By definition, sample paths of Brownian motion are almost surely continuous. When
viewing Brownian motion as the weak limit of a scaled symmetric random walk, each sample
path t — Bt(") (w) remains continuous for any fixed n, despite exhibiting a spiky appearance;
see Figure [l However, as n increases, the frequency of oscillations grows, resulting in
increasingly irregular paths. This limiting behavior ultimately leads to a function that is
continuous everywhere but differentiable nowhere. Consequently, the derivative %}Ew) is
ill-defined for a.a. w € 2.

ITheorem 4.4 The Brownian motion {B;};> is a Markov process and a martingale.

Proof. We first show that B = {B;}:>o is Markov. For any 0 < s < ¢, we can write
B, = (B; — By) + Bs, where B, — By 11 Fg, thanks to the independent increment property
of Brownian motions. Let f be a bounded measurable function, and define g by

9(x) = E[f(z + By — By)].
Then, by the independent increment and Lemma [2.1],
ELf (Bo)|Fs] = E[f(Bs + (B — Bs))|Fs] = 9(Bs).
Hence, B is a Markov process.

Next, we prove that the Brownian motion is a martingale. The adaptedness of {B;}i>¢
follows from the definition. In addition, B; ~ N(0,¢) and thus B, € L' (Indeed, E[|B,|] =
\/2/m). Finally, for any 0 < s < ¢, using the independent increment,

E[B;|Fs] = E[B, — Bs + Bs|Fs] = E[B; — Bs|Fs| + B, = E[B; — B,]| + Bs = Bs.
Hence, {B;}+>0 is a martingale.

[]

The correlation structure of Brownian motion across different time points offers another
distinctive characterization of the process.

Proposition 4.5 Let {B;}:>o be a Brownian motion. Then, for any s, > 0,

Cov(Bs, Bt) = min{s, t}.



Proof. Without loss of generality, we assume that s < t and show that Cov(Bs, B;) = s.
Indeed, using the fact that B; ~ N(0,t), B, ~ N(0,s), and the independent increment of
Brownian motions,

COV(BS, Bt) =K SBt — ]E[BS]E[Bt]
B

s8] — 0

By — Bs + B;)]
B, — B,)] + E[B?]

JE[Bs — B + E[B?] (independent increment)

The following theorem shows that Brownian motions are scale-invariant.

Theorem 4.6 Let {B;};>o be a standard Brownian motion on the probability space
(Q, F,{F:},P). Then, for any ¢ > 0, {%BCQt}tZO is a standard Brownian motion on the
probability space (Q, F, {Fe >0, P).

Proof. Let B, := Bczt and G, := F.2,. It is clear that B; has continuous sample paths, and
is adapted to G, since B, is F.2;-measurable. Therefore, it suffices to show that B; has
independent and Gaussian increment.

Since B is a standard Brownian motion, for any 0 < s <t we have B2y — Bez, 1L Feay,
which implies B, — B, 1L G,. This shows that B, has independent increment. Finally, using
the fact that B, — Be, ~ N(0,c*(t — s)) for any 0 < s < ¢, we have

- - 1
By — By = —=(Bgy — Beg) ~ N(O,t — 35).
c
Therefore, Bt has Gaussian increment. O

Example 4.1 (Brownian motions with drift) Let {B;};>¢ be a standard Brownian
motion. Then, for any u € R, the process Bl := ut + B; is called a Brownian motion
with drift ;1. Note that E[B)'] = ut, and B* is a super-martingale (resp. sub-martingale)
if © <0 (resp. u > 0).

4.3 Quadratic Variations

Let {X:}:>0 be a square-integrable martingale on (Q, F, {F:},P). Recall from Proposition
and the discussion following it, {X?};>¢ is a sub-martingale. Under mild conditions, this

10



sub-martingale has the following (unique) representation:
XtQ — Mt + At7

where
1. {M,}>0 is a martingale;
2. {A;}+>0 is an increasing process, i.e., Ay > Ay a.s. for any t > s.

The representation is called the Doob-Meyer decomposition. It says that a sub-
martingale can be written as a martingale part, and an increasing part which drives up
the conditional expectations. In particular, the process {A;};>0 is called the quadratic
vartation of the martingale {X;}>o:

Definition 4.2 Let {X;};>o be a square-integrable martingale on (Q, F,{F;},P). The
quadratic variation process of X;, denoted by (X),, is the unique process such that
(X)o=0and X? — (X); is a martingale.

Example 4.2 Following from Example 2.1, when p = 1/2, {X,,}>°, is a martingale.
Show that {X2 — n}°°, is a martingale, and thus the quadratic variation of X,, is n.

Solution. For any n > 1,
XZ—H = (Xn + £n+1)2 = Xi + 2811 X5 + 52—1—1-
Using this, the i.i.d. property of {£,}5°,, and the F,-measurability of X,,, we have

]E[XZ—H —(n+1)|F] = E[Xﬂ]:n] + 2E[n 1. X0 | Fu] + E| 72L+1‘]:n] —n—1
12 + (_1)2

—x2+ = —n-1

_ y2
=X, —n.

Applying this recursively using the tower property of conditional expectations, we have
that
E[X2 —m|F] = X2—n

for any m > n > 1. O]

Theorem 4.7 The quadratic variation of the standard Brownian motion { B; };>¢ is given
by (B); = t, i.e., B> —t is a martingale.

Proof. 1t is clear that {Y; := B} — t};>0 is {F;}-adapted, and Y; € LY(Q, F,P) for all ¢t > 0.

11



It remains to verify that, for any 0 < s < ¢, E[Y;|F;] = Y a.s. Indeed,

[
=E[(B, — B, + B,)?*|F,] -t
= E[(B, — B,)*] + 2E[B,(B, — B,)|F,| + E[B2|F.] — t
= E[(B; — B,)*] + 2B,E[B, — B,] + B> — t
=t—s+ B>t
= BS2 —s=Y,,

where we have used the independent increment of Brownian motions, and the fact that B,
is Fs,-measurable. O

The term variation often refers to partial sums of increments. An alternative definition of
quadratic variation considers the limit of squared increments over increasingly finer partitions
as below. Quadratic variation plays a central role in stochastic calculus. As we will see in the
next chapter, it gives rise to the additional term in It6’s lemma that distinguishes stochastic
calculus from classical calculus.

Definition 4.3 Let {X;};>¢ be an adapted process. Fixt > 0 and let IT = {¢,¢1,...,tm}
with 0 <tg <t; <--- <t, =t be a partition of [0,¢]. The p-th variation of X over
the partition Il is defined as

Vi(p)(H) = Z |th - thfl ’P :
k=1

In particular, if V;”)(IT) is convergent in some sense as ||TI|| := Max <k<m |tk — tp—1| = 0,
the limit is referred to as the quadratic variation.

The following theorem shows the equivalence of Definitions [1.2] and [4.3] concerning the
quadratic variation of a continuous, square-integrable martingale.

Theorem 4.8 Let {X;};>¢ be a square-integrable martingale with continuous sample
paths, and II be a partition of [0,¢]. Then,

lim V(1) = (X),

(1] —0

in probability.

Example 4.3 For any ¢ > 0, and any partition IT of [0,¢], show that the 2nd-variation

12



of a standard Brownian motion Vt(z)(H) satisfies

Solution. Fix t > 0 and let IT = {¢o,t1,...,t,} be a partition of [0,¢]. Using the fact
that By, — By, _, ~ N(0,tx — tx—_1), we have

E [Vt(2)<H):| = ZE [(Btk - Btk71)2:| = Ztk —tg_1 = 1.
k=1 k=1
Hence, to show that Vt(2)(H) = t, it suffices to show that

Var [VJ”(H)] —E {(V;(Q)(H) - t)z] =0

as ||II]] — 0.
Using the independent increment, we have

NE

Var [V ()| = 3" Var [|B,, - By, ,[?)

x>
Il

1

[
WE

(E “Btk - Btk—1|4j| - E2 “Btk - Btk—1|2])

£
I

1

Recall that for X ~ N (0, 0?),
E [X?] = 0% and E[X"] = 30"

Hence,
Var |:V;(2)(H)i| = Z (E “Btk - Btk—1‘4:| - E2 “Btk _ Btk71‘2])
k=1
— Z (3(tk — the1)® — (tk — te1)?)
k=1
=2) (tg—tpo1)?
k=1
< 2| Y (6 — ter)
k=1
= 2t||II]] = 0
as ||IT|| — 0. Therefore, we conclude that Vtm)(H) L O

13



The above example shows that the quadratic variation of B is finite, yet non-zero. Indeed,
as shown below, any measurable and differentiable function has a zero quadratic variation.
This echos the nowhere differentiability of the sample paths of Brownian motions.

Theorem 4.9 Let f:[0,00) — R be a differentiable function such that for every t > 0,

[176ras <o
0

where the integral is understood in the Riemann sense. Then, the quadratic variation of
f over [0,¢] is zero for all ¢ > 0.

Proof. Fixt > 0 and let IT = {to, ..., t,} be a partition of the interval [0,¢]. Let f : Rsg = R
be a differentiable function, and define

VA = [ f(t) — flte)]

By the mean value theorem, for any k = 1,...,m, there exists & € [tx_1,1x] such that

f(te) = f(ti—1) = f'(&)(tk — ti—1). Hence,
V) = D71 € Pt — tem)? < TS /(&) Ptk — tis)
k=1 k=1

As [|TI|| — 0, we have
m t
SO Pt — th1) — / \F/(s)|2ds.
k=1 0

Therefore, given that fot |f'(s)|?ds < oo, we have

lim V;*(II) < lim ||H||Z|f &)t — tir) = 0.

([TT]—0 [T =0

4.4 Multivariate Brownian Motions

We define a standard d-dimensional Brownian motion as follows:

14



Definition 4.4 Let d be a positive integer. An adapted process {B; = (B}, ..., Bf)}i>0
on the filtered probability space (2, F,{F;}i>0,P) taking values in R? is said to be a
standard d-dimensional Brownian motion if it satisfies the following:

1. By = 04 almost surely;

2. The sample paths of B; are almost surely continuous;

3. The process has independent increments: for any 0 < s < t, By — By is independent

of Fi;
4. The increments follow multivariate normal distributions: for all s,t > 0, By s —
By ~ N (0g4, (t — s)I;), where I; is the d x d identity matrix.

It is easy to verify the following properties for a standard d-dimensional Brownian motion
B:
1. B is a Markov process and a martingale;

2. Write B; = (B}, ..., B%). Then, for each i = 1,...,d, B! is a standard one-dimensional
Brownian motion.

15
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