
MATH5635 Stochastic Calculus for Finance I Autumn 2025

Chapter 4: Martingales and Brownian Motions

Lecturer: Kenneth Ng

Preview
This chapter introduces adapted stochastic processes within the framework of evolving in-
formation, formalized by filtrations. We begin by defining filtrations and the notion of
adaptedness. We then explore two important classes of processes that exhibit special prop-
erties: Markov processes and martingales. In the last part of this chapter, we introduce
the Brownian motion along with their properties, which is the building block of stochastic
calculus and modelling in the subsequent chapters.

Key topics in this chapter:
1. Filtrations and adapted processes;

2. Markov processes;

3. Martingales;

4. Brownian motions and properties.

1 Adapted Stochastic Processes
Generally speaking, a stochastic process on a probability space (Ω,F ,P) is a family of F -
measurable random variables {Xt}t∈T , indexed by a time parameter t ∈ T :

1. If T = N0, {Xt}t∈T is a discrete-time process;

2. If T = R+ := [0,∞), {Xt}t∈T is a continuous-time process;

In this course, we will primarily focus on continuous-time stochastic processes. For conve-
nience, we will use X to denote the process {Xt}t∈T when no confusion is caused.

By definition, each Xt is F -measurable. Yet, this sole requirement does not capture the
non-anticipative nature of a realistic stochastic process. This property means that the value
of the process at time t should depend only on the information available up to time t, and
not on any future information.

For example, let T > 0 and {St}t∈[0,T ] be the stochastic process such that St represents the
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price of a risky asset at time t. Define Mt := maxu∈[t,T ] Su, which represents the maximum
price of the asset over the remaining time interval [t, T ]. The process {Mt}t∈[0,T ] fails to be
non-anticipative, Mt depends on the price of the asset in the future.

The above example highlights the importance of restricting realistic stochastic processes
to rely only on the information available up to the current time. We first define a filtration
as follows.

Definition 1.1 Let (Ω,F ,P) be a probability space. The collection {Ft}t∈T is called a
filtration if

1. for each t ∈ T , Ft is a sub-σ-algebra of F ;
2. for any s ≤ t, s, t ∈ T , Fs ⊆ Ft.

In that case, we call the tuple (Ω,F , {Ft}t∈T ,P) a filtered probability space.

Within a filtration {Ft}t∈T , each Ft represents the collection of events whose outcomes
are known by time t. The second defining property of a filtration ensures that information
is cumulative: any event observable at an earlier time remains observable at all later times.
Given a filtration, we define an adapted stochastic process as follows.

Definition 1.2 A stochastic process is said to be adapted to the filtration {Ft}t∈T if,
for any t ∈ T , Xt is Ft-measurable.

In other words, the random variable Xt is fully determined by the information up to time
t as encoded by Ft.

Definition 1.3 Let {Xt}t∈T be a stochastic process defined on a filtered probability
space (Ω,F , {Ft}t∈T ,P). For each fixed ω ∈ Ω, the sample path of the process is the
function

t 7→ Xt(ω), t ≥ 0.

That is, a sample path is a trajectory of the stochastic process as a function of time.

Definition 1.4 Let X = {Xt}t∈T be an adapted process on a filtered probability space
(Ω,F , {Ft}t∈T ,P). The filtration generated by X, denoted {FX

t }t∈T , is defined by

FX
t := σ(Xs : s ≤ t ∈ T ),

i.e., FX
t is the smallest σ-algebra with respect to which all Xs for s ≤ t ∈ T are

measurable.
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2 Markov Processes

Definition 2.1 A {Ft}t∈T -adapted process X = {Xt}t∈T is called a Markov process
if, for any s ≤ t ∈ T and A ∈ Ft,

P(Xt ∈ A|Fs) = P(Xt ∈ A|σ(Xs)) a.s.

Equivalent, X is Markov if, for any s ≤ t ∈ T and any bounded, Borel measurable
function f , there exists another Borel measurable function g such that

E[f(Xt)|Fs] = g(Xs)

The following independence lemma is useful for showing the Markov property of a stochas-
tic process.

Lemma 2.1 Let X1, . . . , Xn be G-measurable random variables, and Y1, . . . , Ym be ran-
dom variables that are independent of G. Let f(x1, . . . , xn, y1, . . . , ym) be a measurable
function and define

g(x1, . . . , xn) := E[f(x1, . . . , xn, Y1, . . . , Ym)].

Then,
E[f(X1, . . . , Xn, Y1, . . . , Ym)|G] = g(X1, . . . , Xn).

Example 2.1 (Random Walk) Consider a sequence of i.i.d. random variables {ξn}∞n=1,
where P(ξn = 1) = p, and P(ξn = −1) = 1 − p, where p ∈ [0, 1]. Define a filtration
{Fn}∞n=0 with discrete time step by Fn := σ(ξk : 0 ≤ k ≤ n), which is generated by the
independent trails up to time n. Define a {Fn}∞n=1-adapted process {Xn}∞n=1 by X1 := ξ1,
and for n > 1,

Xn =
n∑

k=1

ξk = Xn−1 + ξn.

We show that {Xn}∞n=1 is a Markov process: for any m > n, Xm = Xn +
∑m

k=n+1 ξk. By
the independence assumption, for any k > n, we have ξk being independent of Fn. Now,
for any measurable function f , let

g(x) := E

[
f

(
x+

m∑
k=n+1

ξk

)]
.

By Lemma 2.1,

E[f(Xm)|Fn] = E

[
f

(
Xn +

m∑
k=n+1

ξm

)∣∣Fn

]
= g(Xn).
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Therefore, X is Markov.

3 Martingales

Definition 3.1 A {Ft}t∈T -adapted process {Xt}t∈T is called a martingale if it satisfies
the following:

1. for any t ∈ T , Xt ∈ L1;
2. for any s ≤ t ∈ T ,

E[Xt|Fs] = Xs a.s.

If the second property is replaced by E[Xt|Fs] ≥ Xs (resp. E[Xt|Fs] ≤ Xs a.s.) for
any 0 ≤ s ≤ t ∈ T , the process {Xt}t≥0 is called a sub-martingale (resp. super-
martingale).

In other words, a martingale is a stochastic process whose future expected values given the
current information remain constant. A sub-martingale (resp. sub-martingale) is a process
whose future expected values given the current information increases (resp. decrease) over
time. By definition, a process is a martingale iff it is both a super-martingale and sub-
martingale.

Example 3.1 (Random Walk) Continuing from Example 2.1, compute E[Xm|Fn] for
any 1 ≤ n < m. Hence, determine the values of p such that {Xn}∞n=1 is a super-
martingale/sub-martingale/martingale.

Solution. We first compute E[Xn+1|Fn] any n ≥ 1. Note that by the independence of
ξn+1 with ξk, 1 ≤ k ≤ n, and the fact that Xn is Fn-measurable,

E[Xn+1|Fn] = E[Xn + ξn+1|Fn] = Xn + E[ξn+1] = Xn + 2p− 1.

Using this and the tower property of conditional expectations, we further have

E[Xn+2|Fn] = E [E[Xn+2|Fn+1]|Fn] = E [Xn+1 + 2p− 1|Fn] = Xn + 2(2p− 1).

Applying this recursively, for any m > n, we have

E[Xm|Fn] = Xn + (m− n)(2p− 1).

Since m − n > 0, {Xn} is a martingale if p = 1/2, a sub-martingale if p ≥ 1/2, and a
super-martingale if p ≤ 1/2.
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Example 3.2 Following from Example 3.1, show that {Xn−n(2p−1)}∞n=1 is a martingale
for any p ∈ [0, 1].

Solution. From Example 3.1, we have shown that, for any m > n,

E[Xm|Fn] = Xn + (m− n)(2p− 1).

Rearranging yields

E[Xm −m(2p− 1)|Fn] = Xn − n(2p− 1).

Therefore, the process {Xn − n(2p− 1)}∞n=1 is a martingale.
Indeed, the term n(2p − 1) serves as a compensator which adjusts for the drift of the
expected value of Xn. By subtracting this drift, the resulting process becomes centered
and thus martingale-valued.

Example 3.3 Let X ∈ L1(Ω,F ,P) and {Ft}t≥0 be a filtration. Then, Zt := E[X|Ft]
is a martingale. To see this, it is clear by definition of conditional expectations that
{Zt}t≥0 is {Ft}t≥0-adapted. In addition, Xt ∈ L1, since by triangle inequality,

E[|Zt|] ≤ E [E[|X||Ft]] = E[|X|] < ∞,

since X ∈ L1. Finally, for any 0 ≤ s ≤ t, using the tower property,

E[Zt|Fs] = E [E[X|Ft]|Fs] = E[X|Fs] = Zs,

which verifies the martingale property.

Proposition 3.1 Let {Xt}t∈T be a martingale. Suppose that φ : R → R is a convex
function and φ(Xt) ∈ L1 for any t ≥ 0. Then, {φ(Xt)}t∈T is a sub-martingale.

As a consequence of Proposition 3.1, if {Xt}t≥0 is a square-integrable martingale on
(Ω,F , {Ft},P), i.e., E[X2

t ] < ∞ for all t ≥ 0. Then, {X2
t }t≥0 is a sub-martingale, since the

function φ(x) = x2 is convex.

Proof. For any s ≤ t ∈ T , using the martingale property of {Xt} and Jensen’s inequality,
we have

E[φ(Xt)|Fs] ≥ φ (E[Xt|Fs]) = φ(Xs) a.s.

5



4 Brownian Motions
This section introduces the Brownian motion, a fundamental continuous stochastic process
and building block of stochastic calculus. It was first observed by Robert Brown in 1828
(and hence the name Brownian motion). The mathematical formulation was later developed
by Norbert Wiener, and the process is also known as the Wiener process in his honor.

We first provide the definition of a standard Brownian motion.

Definition 4.1 (Brownian Motion) An adapted process {Bt}t≥0 defined on a filtered
probability space (Ω,F , {Ft}t≥0,P) is called a Brownian motion (a.k.a. Wiener pro-
cess) if it satisfies the following properties:

1. B0 = 0 almost surely;
2. The sample paths of Bt are almost surely continuous;
3. The process has independent increments: for any 0 ≤ s ≤ t, Bt−Bs is independent

of Fs;
4. The increments are normally distributed: for all s, t ≥ 0, Bt+s −Bs ∼ N (0, t).

Remark 4.1. Since Bs is Fs-measurable, we have σ(Bs) ⊂ Fs. Hence, by Remark 1.1 of
Chapter 3, the independent increment implies Bt −Bs and Bs are independent.

There are various ways to construct a continuous-time process satisfying the properties
outlined in Definition 4.1. For a comprehensive treatment, readers are referred to the mono-
graph Brownian Motion and Stochastic Calculus by Karatzas and Shreve. In this section,
we discuss a classical approach by viewing Brownian motion as the (weak) limit of a suitably
scaled random walk.

4.1 Limit of Symmetric Random Walk

Consider the symmetric random walk {Xn}∞n=0, where

Xn =
n∑

k=1

ξk,

and the random variables {ξn}∞n=0 are i.i.d. with distribution P(ξn = 1) = 1/2 = P(ξn = −1).
For each n ∈ N, define the scaled process {B(n)

t }t≥0 by

B
(n)
t :=

1√
n
X⌊nt⌋, t ≥ 0.

Figure 1 shows a simulated path of {B(n)
t }t∈[0,1] for different values of n. One can observe

that as n increases, the path becomes more spiky with an increasing frequency of oscillations
since more ξk’s are included in X⌊nt⌋. In addition, it is easy to check that

E[B(n)
t ] = 0 and Var[B(n)

t ] =
⌊nt⌋
n

.
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Figure 2 depicts the distribution of N random samples drawn from Bn
1 for n = 20, 000.

As N increases, we see that the histogram converges to the pdf of the standard normal
variable.

(a) n = 10 (b) n = 100 (c) n = 1000

Figure 1: Simulations of sample paths of Bn
t for different n

(a) N = 100 (b) N = 1000 (c) N = 10000

Figure 2: Distribution of Bn
1 for n = 20000 and different number of simulations N . The red

curve depicts the density function of N (0, 1)

The following shows the convergence of the finite-dimensional distributions of the scaled
random walk to a standard Brownian motion.

Theorem 4.2 Let 0 ≤ t1 < · · · < tk < ∞, we have (B
(n)
t1 , B

(n)
t2 − B

(n)
t1 , . . . , B

(n)
tk

− B
(n)
tk−1

)
converges in distribution to (Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1

).

Proof. For simplicity, we consider k = 2, and let s = t1, t = t2. Consider the mgf of
(B

(n)
s , B

(n)
t −B

(n)
s ): for u, v ∈ R,

M
B

(n)
s ,B

(n)
t −B

(n)
s
(u, v) = E

[
euB

(n)
s +v(B

(n)
t −B

(n)
s )
]

= E

exp
 u√

n

⌊ns⌋∑
j=1

ξj +
v√
n

⌊nt⌋∑
j=⌊ns⌋+1

ξj


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= E

exp
 u√

n

⌊ns⌋∑
j=1

ξj

E

exp
 v√

n

⌊nt⌋∑
j=⌊ns⌋+1

ξj

 .

where we have used the i.i.d. property of {ξj}∞j=1.

We consider the first expectation on the right, which is essentially the mgf of 1√
n

∑⌊ns⌋
j=1 ξj.

The second expectation can be handled in a similar fashion. Let mn := ⌊ns⌋. Then

1√
n

⌊ns⌋∑
j=1

ξj =
1√
n

mn∑
j=1

ξj =

√
mn√
n

· 1
√
mn

mn∑
j=1

ξj.

Since mn/n → s, we have
√
mn/

√
n →

√
s deterministically. By the central limit theorem,

1
√
mn

mn∑
j=1

ξj
d−→ N (0, 1).

Consequently 1

1√
n

⌊ns⌋∑
j=1

ξj → N (0, s)

in distribution, whence

lim
n→∞

E

exp
 u√

n

⌊ns⌋∑
j=1

ξj

 = MN (0,s)(u) = e
su2

2 .

Likewise,

lim
n→∞

E

exp
 v√

n

⌊nt⌋∑
j=⌊ns⌋+1

ξj

 = e
v2(t−s)

2 .

Therefore, we have shown that

lim
n→∞

M
B

(n)
s ,B

(n)
t −B

(n)
s
(u, v) = e

u2s
2

+
v2(t−s)

2 = MBs,Bt−Bs(u, v).

1This is a result of Slutsky’s theorem

8



4.2 Properties of Brownian Motion

The first property is concerned with the behavior of the sample paths of Brownian mo-
tions.

Theorem 4.3 The sample paths of a Brownian motion are almost surely continuous,
but almost surely nowhere differentiable.

By definition, sample paths of Brownian motion are almost surely continuous. When
viewing Brownian motion as the weak limit of a scaled symmetric random walk, each sample
path t 7→ B

(n)
t (ω) remains continuous for any fixed n, despite exhibiting a spiky appearance;

see Figure 1. However, as n increases, the frequency of oscillations grows, resulting in
increasingly irregular paths. This limiting behavior ultimately leads to a function that is
continuous everywhere but differentiable nowhere. Consequently, the derivative dBt(ω)

dt
is

ill-defined for a.a. ω ∈ Ω.

Theorem 4.4 The Brownian motion {Bt}t≥0 is a Markov process and a martingale.

Proof. We first show that B = {Bt}t≥0 is Markov. For any 0 ≤ s ≤ t, we can write
Bt = (Bt − Bs) + Bs, where Bt − Bs ⊥⊥ Fs, thanks to the independent increment property
of Brownian motions. Let f be a bounded measurable function, and define g by

g(x) := E[f(x+Bt −Bs)].

Then, by the independent increment and Lemma 2.1,

E[f(Bt)|Fs] = E[f(Bs + (Bt −Bs))|Fs] = g(Bs).

Hence, B is a Markov process.

Next, we prove that the Brownian motion is a martingale. The adaptedness of {Bt}t≥0

follows from the definition. In addition, Bt ∼ N (0, t) and thus Bt ∈ L1 (Indeed, E[|Bt|] =√
2/π). Finally, for any 0 ≤ s ≤ t, using the independent increment,

E[Bt|Fs] = E[Bt −Bs +Bs|Fs] = E[Bt −Bs|Fs] +Bs = E[Bt −Bs] +Bs = Bs.

Hence, {Bt}t≥0 is a martingale.

The correlation structure of Brownian motion across different time points offers another
distinctive characterization of the process.

Proposition 4.5 Let {Bt}t≥0 be a Brownian motion. Then, for any s, t ≥ 0,

Cov(Bs, Bt) = min{s, t}.
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Proof. Without loss of generality, we assume that s ≤ t and show that Cov(Bs, Bt) = s.
Indeed, using the fact that Bt ∼ N (0, t), Bs ∼ N (0, s), and the independent increment of
Brownian motions,

Cov(Bs, Bt) = E[BsBt]− E[Bs]E[Bt]

= E[BsBt]− 0

= E[Bs(Bt −Bs +Bs)]

= E[Bs(Bt −Bs)] + E[B2
s ]

= E[Bs]E[Bs −Bt] + E[B2
s ] (independent increment)

= s.

The following theorem shows that Brownian motions are scale-invariant.

Theorem 4.6 Let {Bt}t≥0 be a standard Brownian motion on the probability space
(Ω,F , {Ft},P). Then, for any c > 0, {1

c
Bc2t}t≥0 is a standard Brownian motion on the

probability space (Ω,F , {Fc2t}t≥0,P).

Proof. Let B̃t :=
1
c
Bc2t and Gt := Fc2t. It is clear that B̃t has continuous sample paths, and

is adapted to Gt since Bc2t is Fc2t-measurable. Therefore, it suffices to show that B̃t has
independent and Gaussian increment.

Since B is a standard Brownian motion, for any 0 ≤ s < t we have Bc2t − Bc2s ⊥⊥ Fc2s,
which implies B̃t − B̃s ⊥⊥ Gs. This shows that B̃t has independent increment. Finally, using
the fact that Bc2t −Bc2s ∼ N (0, c2(t− s)) for any 0 ≤ s < t, we have

B̃t − B̃s =
1

c
(Bc2t −Bc2s) ∼ N (0, t− s).

Therefore, B̃t has Gaussian increment.

Example 4.1 (Brownian motions with drift) Let {Bt}t≥0 be a standard Brownian
motion. Then, for any µ ∈ R, the process Bµ

t := µt+Bt is called a Brownian motion
with drift µ. Note that E[Bµ

t ] = µt, and Bµ is a super-martingale (resp. sub-martingale)
if µ ≤ 0 (resp. µ ≥ 0).

4.3 Quadratic Variations

Let {Xt}t≥0 be a square-integrable martingale on (Ω,F , {Ft},P). Recall from Proposition
3.1 and the discussion following it, {X2

t }t≥0 is a sub-martingale. Under mild conditions, this
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sub-martingale has the following (unique) representation:

X2
t = Mt + At,

where

1. {Mt}t≥0 is a martingale;

2. {At}t≥0 is an increasing process, i.e., At ≥ As a.s. for any t ≥ s.

The representation is called the Doob-Meyer decomposition. It says that a sub-
martingale can be written as a martingale part, and an increasing part which drives up
the conditional expectations. In particular, the process {At}t≥0 is called the quadratic
variation of the martingale {Xt}t≥0:

Definition 4.2 Let {Xt}t≥0 be a square-integrable martingale on (Ω,F , {Ft},P). The
quadratic variation process of Xt, denoted by ⟨X⟩t, is the unique process such that
⟨X⟩0 = 0 and X2

t − ⟨X⟩t is a martingale.

Example 4.2 Following from Example 2.1, when p = 1/2, {Xn}∞n=1 is a martingale.
Show that {X2

n − n}∞n=1 is a martingale, and thus the quadratic variation of Xn is n.

Solution. For any n ≥ 1,

X2
n+1 = (Xn + ξn+1)

2 = X2
n + 2ξn+1Xn + ξ2n+1.

Using this, the i.i.d. property of {ξn}∞n=1, and the Fn-measurability of Xn, we have

E[X2
n+1 − (n+ 1)|Fn] = E[X2

n|Fn] + 2E[ξn+1Xn|Fn] + E[ξ2n+1|Fn]− n− 1

= X2
n + 2XnE[ξn] + E[ξ2n+1]− n− 1

= X2
n +

12 + (−1)2

2
− n− 1

= X2
n − n.

Applying this recursively using the tower property of conditional expectations, we have
that

E[X2
m −m|Fn] = X2

n − n

for any m ≥ n ≥ 1.

Theorem 4.7 The quadratic variation of the standard Brownian motion {Bt}t≥0 is given
by ⟨B⟩t = t, i.e., B2

t − t is a martingale.

Proof. It is clear that {Yt := B2
t − t}t≥0 is {Ft}-adapted, and Yt ∈ L1(Ω,F ,P) for all t ≥ 0.
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It remains to verify that, for any 0 ≤ s ≤ t, E[Yt|Fs] = Ys a.s. Indeed,

E[Yt|Fs] = E[B2
t − t|Fs]

= E[(Bt −Bs +Bs)
2|Fs]− t

= E[(Bt −Bs)
2] + 2E[Bs(Bt −Bs)|Fs] + E[B2

s |Fs]− t

= E[(Bt −Bs)
2] + 2BsE[Bt −Bs] +B2

s − t

= t− s+B2
s − t

= B2
s − s = Ys,

where we have used the independent increment of Brownian motions, and the fact that Bs

is Fs-measurable.

The term variation often refers to partial sums of increments. An alternative definition of
quadratic variation considers the limit of squared increments over increasingly finer partitions
as below. Quadratic variation plays a central role in stochastic calculus. As we will see in the
next chapter, it gives rise to the additional term in Itô’s lemma that distinguishes stochastic
calculus from classical calculus.

Definition 4.3 Let {Xt}t≥0 be an adapted process. Fix t > 0 and let Π = {t0, t1, . . . , tm}
with 0 ≤ t0 ≤ t1 ≤ · · · ≤ tm = t be a partition of [0, t]. The p-th variation of X over
the partition Π is defined as

V
(p)
t (Π) :=

m∑
k=1

∣∣Xtk −Xtk−1

∣∣p .
In particular, if V (2)

t (Π) is convergent in some sense as ∥Π∥ := max1≤k≤m |tk − tk−1| → 0,
the limit is referred to as the quadratic variation.

The following theorem shows the equivalence of Definitions 4.2 and 4.3 concerning the
quadratic variation of a continuous, square-integrable martingale.

Theorem 4.8 Let {Xt}t≥0 be a square-integrable martingale with continuous sample
paths, and Π be a partition of [0, t]. Then,

lim
∥Π∥→0

V
(2)
t (Π) = ⟨X⟩t

in probability.

Example 4.3 For any t > 0, and any partition Π of [0, t], show that the 2nd-variation
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of a standard Brownian motion V
(2)
t (Π) satisfies

V
(2)
t (Π)

L2

→ t.

Solution. Fix t > 0 and let Π = {t0, t1, . . . , tm} be a partition of [0, t]. Using the fact
that Btk −Btk−1

∼ N (0, tk − tk−1), we have

E
[
V

(2)
t (Π)

]
=

m∑
k=1

E
[
(Btk −Btk−1

)2
]
=

m∑
k=1

tk − tk−1 = t.

Hence, to show that V
(2)
t (Π)

L2

→ t, it suffices to show that

Var
[
V

(2)
t (Π)

]
= E

[(
V

(2)
t (Π)− t

)2]
→ 0

as ∥Π∥ → 0.
Using the independent increment, we have

Var
[
V

(2)
t (Π)

]
=

m∑
k=1

Var
[
|Btk −Btk−1

|2
]

=
m∑
k=1

(
E
[
|Btk −Btk−1

|4
]
− E2

[
|Btk −Btk−1

|2
])

Recall that for X ∼ N (0, σ2),

E
[
X2
]
= σ2 and E[X4] = 3σ4.

Hence,

Var
[
V

(2)
t (Π)

]
=

m∑
k=1

(
E
[
|Btk −Btk−1

|4
]
− E2

[
|Btk −Btk−1

|2
])

=
m∑
k=1

(
3(tk − tk−1)

2 − (tk − tk−1)
2
)

= 2
m∑
k=1

(tk − tk−1)
2

≤ 2∥Π∥
m∑
k=1

(tk − tk−1)

= 2t∥Π∥ → 0

as ∥Π∥ → 0. Therefore, we conclude that V
(2)
t (Π)

L2

→ t.
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The above example shows that the quadratic variation of B is finite, yet non-zero. Indeed,
as shown below, any measurable and differentiable function has a zero quadratic variation.
This echos the nowhere differentiability of the sample paths of Brownian motions.

Theorem 4.9 Let f : [0,∞) → R be a differentiable function such that for every t ≥ 0,∫ t

0

|f ′(s)|2 ds < ∞,

where the integral is understood in the Riemann sense. Then, the quadratic variation of
f over [0, t] is zero for all t ≥ 0.

Proof. Fix t > 0 and let Π = {t0, . . . , tm} be a partition of the interval [0, t]. Let f : R≥0 → R
be a differentiable function, and define

V
(2)
t (Π) :=

m∑
k=1

|f(tk)− f(tk−1)|2 .

By the mean value theorem, for any k = 1, . . . ,m, there exists ξk ∈ [tk−1, tk] such that
f(tk)− f(tk−1) = f ′(ξk)(tk − tk−1). Hence,

V
(2)
t (Π) =

m∑
k=1

|f ′(ξk)|2(tk − tk−1)
2 ≤ ∥Π∥

m∑
k=1

|f ′(ξk)|2(tk − tk−1)

As ∥Π∥ → 0, we have
m∑
k=1

|f ′(ξk)|2(tk − tk−1) →
∫ t

0

|f ′(s)|2ds.

Therefore, given that
∫ t

0
|f ′(s)|2ds < ∞, we have

lim
∥Π∥→0

V
(2)
t (Π) ≤ lim

∥Π∥→0
∥Π∥

m∑
k=1

|f ′(ξk)|2(tk − tk−1) = 0.

4.4 Multivariate Brownian Motions

We define a standard d-dimensional Brownian motion as follows:

14



Definition 4.4 Let d be a positive integer. An adapted process {Bt = (B1
t , . . . , B

d
t )}t≥0

on the filtered probability space (Ω,F , {Ft}t≥0,P) taking values in Rd is said to be a
standard d-dimensional Brownian motion if it satisfies the following:

1. B0 = 0d almost surely;
2. The sample paths of Bt are almost surely continuous;
3. The process has independent increments: for any 0 ≤ s ≤ t, Bt−Bs is independent

of Fs;
4. The increments follow multivariate normal distributions: for all s, t ≥ 0, Bt+s −

Bs ∼ N (0d, (t− s)Id), where Id is the d× d identity matrix.

It is easy to verify the following properties for a standard d-dimensional Brownian motion
B:

1. B is a Markov process and a martingale;

2. Write Bt = (B1
t , . . . , B

d
t ). Then, for each i = 1, . . . , d, Bi

t is a standard one-dimensional
Brownian motion.
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